ECEN 667 Power System Stability

Lecture 22: Small Signal Stability

Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University overbye@tamu.edu

Announcements

- Read Chapter 8
- Homework 5 is due on Thursday Nov 14

Small Signal Stability Analysis

- Small signal stability is the ability of the power system to maintain synchronism following a small disturbance
 - System is continually subject to small disturbances, such as changes in the load
- The operating equilibrium point (EP) obviously must be stable
- Small system stability analysis (SSA) is studied to get a feel for how close the system is to losing stability and to get additional insight into the system response
 - There must be positive damping

Model Based SSA

• Assume the power system is modeled in our standard form as

 $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{y})$ $\mathbf{0} = \mathbf{g}(\mathbf{x}, \mathbf{y})$

The system can be linearized about an equilibrium point
 If there are just classical generator

 $\Delta \dot{\mathbf{x}} = \mathbf{A} \Delta \mathbf{x} + \mathbf{B} \Delta \mathbf{y}$

 $\mathbf{0} = \mathbf{C} \Delta \mathbf{x} + \mathbf{D} \Delta \mathbf{y}$

If there are just classical generator models then **D** is the power flow Jacobian; otherwise it also includes the stator algebraic equations

• Eliminating Δy gives $\Delta \dot{x} = (A - BD^{-1}C)\Delta x = A_{sys}\Delta x$

Model Based SSA

- The matrix \mathbf{A}_{sys} can be calculated doing a partial factorization, just like what was done with Kron reduction (Ward equivalents)
- SSA is done by looking at the eigenvalues (and other properties) of A_{sys}

• Consider the two bus, two classical generator system from lectures 18 and 20 with $X_{d1}'=0.3$, $H_1=3.0$, $X_{d2}'=0.2$, $H_2=6.0$

• Essentially everything needed to calculate the **A**, **B**, **C** and **D** matrices was covered in lecture 19

• The A matrix is calculated differentiating $\mathbf{f}(\mathbf{x},\mathbf{y})$ with respect to \mathbf{x} (where \mathbf{x} is δ_1 , $\Delta \omega_1$, δ_2 , $\Delta \omega_2$)

 $d\delta_1$

$$\begin{aligned} \overline{dt} &= \Delta \omega_{I,pu} \omega_s \\ \frac{d\Delta \omega_{I,pu}}{dt} &= \frac{1}{2H_1} \left(P_{M1} - P_{E1} - D_I \Delta \omega_{I,pu} \right) \\ \frac{d\delta_2}{dt} &= \Delta \omega_{2,pu} \omega_s \\ \frac{d\Delta \omega_{2,pu}}{dt} &= \frac{1}{2H_2} \left(P_{M2} - P_{E2} - D_2 \Delta \omega_{I,pu} \right) \\ P_{Ei} &= \left(E_{Di}^2 - E_{Di} V_{Di} \right) G_i + \left(E_{Qi}^2 - E_{Qi} V_{Qi} \right) G_i + \left(E_{Di} V_{Qi} - E_{Qi} V_{Di} \right) B_i \\ E_{Di} &+ j E_{Qi} = E_i' \left(\cos \delta_i + j \sin \delta_i \right) \end{aligned}$$

• Giving

$$\mathbf{A} = \begin{bmatrix} 0 & 376.99 & 0 & 0 \\ -0.761 & 0 & 0 & 0 \\ 0 & 0 & 0 & 376.99 \\ 0 & 0 & -0.389 & 0 \end{bmatrix}$$

• **B**, **C** and **D** are as calculated previously for the implicit integration, except the elements in B are not multiplied by $\Delta t/2$ $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$

$$\mathbf{B} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -0.2889 & 0.6505 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0.0833 & 0.3893 \end{bmatrix}$$

• The C and D matrices are

$$\mathbf{C} = \begin{bmatrix} -3.903 & 0 & 0 & 0 \\ -1.733 & 0 & 0 & 0 \\ 0 & 0 & -4.671 & 0 \\ 0 & 0 & 1.0 & 0 \end{bmatrix}, \quad \mathbf{D} = \begin{bmatrix} 0 & 7.88 & 0 & -4.54 \\ -7.88 & 0 & 4.54 & 0 \\ 0 & -4.54 & 0 & 9.54 \\ 4.54 & 0 & -9.54 & 0 \end{bmatrix}$$

• Giving

$$\mathbf{A}_{sys} = \mathbf{A} \cdot \mathbf{B}\mathbf{D}^{-1}\mathbf{C} = \begin{bmatrix} 0 & 376.99 & 0 & 0 \\ -0.229 & 0 & 0.229 & 0 \\ 0 & 0 & 0 & 376.99 \\ 0.114 & 0 & -0.114 & 0 \end{bmatrix}$$

AM

SSA Two Generator

- Calculating the eigenvalues gives a complex pair and two zero eigenvalues
- The complex pair, with values of +/- j11.39 corresponds to the generators oscillating against each other at 1.81 Hz
- One of the zero eigenvalues corresponds to the lack of an angle reference
 - Could be rectified by redefining angles to be with respect to a reference angle (see book 226) or we just live with the zero
- Other zero is associated with lack of speed dependence in the generator torques

SSA Two Generator Speeds

• The two generator system response is shown below for a small disturbance

Notice the actual response closely matches the calculated frequency

SSA Three Generator Example

• The two generator system is extended to three generators with the third generator having H_3 of 8 and X_{d3} '=0.3

SSA Three Generator Example

The oscillation is started with a short, self-clearing fault

Shortly we'll discuss modal analysis to determine the contribution of each mode to each signal

Comtrade Format (IEEE Std. C37.111)

- Comtrade is a standard for exchanging power system time-varying data
 - Originally developed for power system transient results such as from digital fault recorders (DFRs), but it can be used for any data
- Comtrade is now being used for the exchange of PMU data and transient stability results
- Three variations on the standard (1991, 1999 and 2013 format)
- PowerWorld now allows transient stability results to be quickly saved in all three Comtrade Formats

Three Bus Example Comtrade Results

```
PowerWorld, Transient Stability, 1991
             ЗΑ,
      З,
                     0D
                                                  1,0,
     1,Gen Bus 1 #1_Speed,,, ,1.0054131589E-9,
                                                            0,999998
                                                    0.999988,0,
     2,Gen Bus 2 #1_Speed,,, ,1.09404544294E-9,
     3,Gen 3 #1 Speed,,, ,9.01581660036E-10,
                                                 1,0,
                                                          0,999998
 60
0
0,503
04/11/16,00:00:00.000000
04/11/16,00:00:00.000000
```

```
0, 11169,
 1,
               0,
                                    0,
                     0, 11169,
 2,
               0,
                                    0,
 З,
           10000,828905, 0,879676,
 4,
           10000,828905, 0,879676,
           20000,825941, 5448,875444,
 5,
 6,
           30000,820131, 16181,867114,
 7,
           40000,811594, 32198,854686,
 8,
           50000,800330, 53337,838422,
 9,
           60000,786339, 79270,818589,
10,
           70000,769859,109779,795318,
11,
           80000,751125,144320,769138,
           90000,730138,182784,740181,
12,
13,
          100000,707255,224625,709109,
14,
          110000,682474,269299,676185,
```

ASCII

The 1991 format is just ascii using four files; the 1999 format extends to allow data to be stored in binary format; the 2013 format extends to allow a single file format

0,999998

Large System Studies

- The challenge with large systems, which could have more than 100,000 states, is the shear size
 - Most eigenvalues are associated with the local plants
 - Computing all the eigenvalues is computationally challenging, order n³
- Specialized approaches can be used to calculate particular eigenvalues of large matrices
 - See Kundur, Section 12.8 and associated references

Relationship to Signal-Based Modal Analysis

16

- Both model-based and signal-based modal analysis are trying to get similar information
- The advantage of the signal-based approach is it does not need a model and does not require calculating the eigenvalues of potentially quite large matrices
- Disadvantages are lack of sensitivity information and the inability to see many modes
- The model-based approach can potentially provide more information, but the quality of the information depends on the model
- Disadvantages are need to deal with potentially quite large matrices and the need for a model.

Single Machine Infinite Bus

- A quite useful analysis technique is to consider the small signal stability associated with a single generator connected to the rest of the system through an equivalent transmission line
- Driving point impedance looking into the system is used to calculate the equivalent line's impedance
 - The Z_{ii} value can be calculated quite quickly using sparse vector methods (a fast forward and fast backward)
- Rest of the system is assumed to be an infinite bus with its voltage set to match the generator's real and reactive power injection and voltage

Small SMIB Example

• The infinite bus voltage is then calculated so as to match the bus i terminal voltage and current

$$\overline{V}_{inf} = \overline{V}_i - Z_i \overline{I}_i$$

where $\left(\frac{P_i + jQ_i}{\overline{V}_i}\right)^* = \overline{I}_i$

While this was demonstrated on an extremely small system for clarity, the approach works the same for any sized system

• In the example we have

$$\begin{split} \left(\frac{P_4 + jQ_4}{\bar{V}_4}\right)^* &= \left(\frac{1 + j0.572}{1.072 + j0.220}\right)^* = 1 - j0.328\\ \bar{V}_{inf} &= \left(1.072 + j0.220\right) - (j0.22)\left(1 - j0.328\right)\\ \bar{V}_{inf} &= 1.0 \end{split}$$

Small SMIB Example

• As a small example, consider the 4 bus system shown below, in which bus 2 really is an infinite bus

• To get the SMIB for bus 4, first calculate Z_{44}

$$\mathbf{Y}_{\mathbf{bus}} = j \begin{bmatrix} -25 & 0 & 10 & 10 \\ 0 & 1 & 0 & 0 \\ 10 & 0 & -15 & 0 \\ 10 & 0 & 0 & -13.33 \end{bmatrix} \rightarrow Z_{44} = j0.1269$$

 Z_{44} is Z_{th} in parallel with $jX'_{d,4}$ (which is j0.3) so Z_{th} is j0.22

Here I retained the infinite bus, but replaced its column and row by zeros except 1 on the diagonal

Calculating the A Matrix

- The SMIB model **A** matrix can then be calculated either analytically or numerically
 - The equivalent line's impedance can be embedded in the generator model so the infinite bus looks like the "terminal"
- This matrix is calculated in PowerWorld by selecting **Transient Stability, SMIB Eigenvalues**
 - Select **Run SMIB Eigen Analysis** to perform an SMIB analysis for all the generators in a case
 - Right click on a generator on the SMIB form and select Show
 SMIB Dialog to see the Generator SMIB Eigenvalue Dialog
 - These two bus equivalent networks can also be saved, which is useful for understanding the behavior of individual generators

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the General Information tab shows information about the two bus equivalent

Generato	r SMIB Eigenvalue Information	Closed (1)					
General Info	A Matrix Eigenvalues						
Generator M Infinite Bus V	VA Base 100.000 /oltage Magnitude (pu) 1.0000 Infinite Bus Angle (deg)	0.0000					
Terminal Cur	rent Magnitude (pu) 1.0526 Terminal Current Angle (deg)	-18.193					
Terminal Volt	tage Magnitude (pu) 1.0946 Terminal Voltage Angle (deg)	11.5942					
Network Impedance on Generator MVA Base Network Impedance on System MVA Base							
Network R	(Gen Base) 0.00000 Network R (System Base) 0.	00000					
Network X	(Gen Base) 0.22000 Network X (System Base) 0.	22000					
OK	Save Cancel 7 Help P	Vint					

PowerWorld case **B4_SMIB**

Example: Bus 4 SMIB Dialog

• On the SMIB dialog, the A Matrix tab shows the A_{sys} matrix for the SMIB generator

💽 Generator SMIB Eigenvalue Information — 🛛						×	
Bus Number	4	~	Find By Number	Status Open	Closed		
Bus Name	Bus 4	~	Find By Name	0 opt			
ID	1		Find	Area Name Home	e (1)		
Generator Information (on Generator MVA Base) General Info A Matrix Eigenvalues							
: 🗒 📄 🏗 排 號 👭 🌺 Records * Set * Columns * 📴 * 🎬 * 👹 * 🗮 * 🗸							
	Row Name Mach		nine Angle	Machine Speed w			
1 Machine Speed w			-0.3753	0.0000			
2 Machine Angle			0.0000		376.9911		

• In this example A_{21} is showing

$$\frac{\partial \Delta \omega_{4,pu}}{\partial \delta_4} = \frac{1}{2H_4} \left(\frac{-\partial P_{E,4}}{\partial \delta_4} \right) = -\left(\frac{1}{6} \right) \left(\left(\frac{-1}{0.3 + 0.22} \right) \left(-1.2812 \cos\left(23.94^\circ \right) \right) \right)$$
$$= -0.3753$$

Example: Bus 4 with GENROU Model

- The eigenvalues can be calculated for any set of generator models
- The example can be extended by replacing the bus 4 generator classical machine with a GENROU model
 - There are now six eigenvalues, with the dominate response coming from the electro-mechanical mode with a frequency of 1.84 Hz, and damping of 6.9%

General I	General Info A Matrix Eigenvalues									
: 📰 🛅 🎬 👫 號 🌺 🌺 Records - Set - Columns - 📴 - 龖 - 🎬 - 🎇 f(x) - 田 🛛 Options -										
	Real Part 🛛 🔻	Imag Part	Magnitude	Damping Ratio	Damped Freq (Hz)	Damped Period (Sec)	Undamped Freq (Hz)	Machine Angle	Machine Sp W	
1	-0.4248	0.0000	0.4248	1.0000	0.0000		0.0676	0.0027	0.	
2	-0.8040	-11.5563	11.5842	0.0694	-1.8392	-0.5437	1.8437	0.7055	0.	
3	-0.8040	11.5563	11.5842	0.0694	1.8392	0.5437	1.8437	0.7055	0.	
4	-3.7087	0.0000	3.7087	1.0000	0.0000		0.5903	0.0155	0.	
5	-14.2256	0.0000	14.2256	1.0000	0.0000		2.2641	0.0044	0.	
6	-21.2472	0.0000	21.2472	1.0000	0.0000		3.3816	0.0159	0.	

PowerWorld case **B4_SMIB_GENROU**