Announcements

• Read Chapter 8
• Homework 5 is due on Thursday Nov 14
Small Signal Stability Analysis

- Small signal stability is the ability of the power system to maintain synchronism following a small disturbance
 - System is continually subject to small disturbances, such as changes in the load
- The operating equilibrium point (EP) obviously must be stable
- Small system stability analysis (SSA) is studied to get a feel for how close the system is to losing stability and to get additional insight into the system response
 - There must be positive damping
Model Based SSA

• Assume the power system is modeled in our standard form as
 \[\dot{x} = f(x, y) \]
 \[0 = g(x, y) \]

• The system can be linearized about an equilibrium point
 \[\Delta \dot{x} = A \Delta x + B \Delta y \]
 \[0 = C \Delta x + D \Delta y \]
 If there are just classical generator models then \(D \) is the power flow Jacobian; otherwise it also includes the stator algebraic equations

• Eliminating \(\Delta y \) gives
 \[\Delta \dot{x} = \left(A - BD^{-1}C \right) \Delta x = A_{sys} \Delta x \]
Model Based SSA

- The matrix A_{sys} can be calculated doing a partial factorization, just like what was done with Kron reduction (Ward equivalents).
- SSA is done by looking at the eigenvalues (and other properties) of A_{sys}.
SSA Two Generator Example

- Consider the two bus, two classical generator system from lectures 18 and 20 with $X_{d1}'=0.3$, $H_1=3.0$, $X_{d2}'=0.2$, $H_2=6.0$

- Essentially everything needed to calculate the A, B, C, and D matrices was covered in lecture 19
SSA Two Generator Example

- The A matrix is calculated differentiating $f(x,y)$ with respect to x (where x is δ_1, $\Delta \omega_1$, δ_2, $\Delta \omega_2$)

$$\frac{d\delta_1}{dt} = \Delta \omega_{1,pu} \omega_s$$

$$\frac{d\Delta \omega_{1,pu}}{dt} = \frac{1}{2H_1} \left(P_{M1} - P_{E1} - D_1 \Delta \omega_{1,pu} \right)$$

$$\frac{d\delta_2}{dt} = \Delta \omega_{2,pu} \omega_s$$

$$\frac{d\Delta \omega_{2,pu}}{dt} = \frac{1}{2H_2} \left(P_{M2} - P_{E2} - D_2 \Delta \omega_{1,pu} \right)$$

$$P_{Ei} = \left(E_{Di}^2 - E_{Di} V_{Di} \right) G_i + \left(E_{Qi}^2 - E_{Qi} V_{Qi} \right) G_i + \left(E_{Di} V_{Qi} - E_{Qi} V_{Di} \right) B_i$$

$$E_{Di} + j E_{Qi} = E_i' \left(\cos \delta_i + j \sin \delta_i \right)$$
SSA Two Generator Example

• Giving

\[
A = \begin{bmatrix}
0 & 376.99 & 0 & 0 \\
-0.761 & 0 & 0 & 0 \\
0 & 0 & 0 & 376.99 \\
0 & 0 & -0.389 & 0 \\
\end{bmatrix}
\]

• \(B, C\) and \(D\) are as calculated previously for the implicit integration, except the elements in \(B\) are not multiplied by \(\Delta t/2\)

\[
B = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
-0.2889 & 0.6505 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0.0833 & 0.3893 \\
\end{bmatrix}
\]
SSA Two Generator Example

- The \mathbf{C} and \mathbf{D} matrices are

\[
\begin{bmatrix}
-3.903 & 0 & 0 & 0 \\
-1.733 & 0 & 0 & 0 \\
0 & 0 & -4.671 & 0 \\
0 & 0 & 1.0 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 7.88 & 0 & -4.54 \\
-7.88 & 0 & 4.54 & 0 \\
0 & -4.54 & 0 & 9.54 \\
4.54 & 0 & -9.54 & 0
\end{bmatrix}
\]

- Giving

\[
\mathbf{A}_{sys} = \mathbf{A} - \mathbf{BD}^{-1}\mathbf{C} =
\begin{bmatrix}
0 & 376.99 & 0 & 0 \\
-0.229 & 0 & 0.229 & 0 \\
0 & 0 & 0 & 376.99 \\
0.114 & 0 & -0.114 & 0
\end{bmatrix}
\]
SSA Two Generator

- Calculating the eigenvalues gives a complex pair and two zero eigenvalues.
- The complex pair, with values of $+/- \ j11.39$ corresponds to the generators oscillating against each other at 1.81 Hz.
- One of the zero eigenvalues corresponds to the lack of an angle reference.
 - Could be rectified by redefining angles to be with respect to a reference angle (see book 226) or we just live with the zero.
- Other zero is associated with lack of speed dependence in the generator torques.
SSA Two Generator Speeds

- The two generator system response is shown below for a small disturbance.

Notice the actual response closely matches the calculated frequency.
The two generator system is extended to three generators with the third generator having H_3 of 8 and $X_{d3} '=0.3$
SSA Three Generator Example

- Using SSA, two frequencies are identified: one at 2.02 Hz and one at 1.51 Hz.

The oscillation is started with a short, self-clearing fault.

Shortly we’ll discuss modal analysis to determine the contribution of each mode to each signal.

PowerWorld case **B2_CLS_3Gen_SSA**
Comtrade Format (IEEE Std. C37.111)

- Comtrade is a standard for exchanging power system time-varying data
 - Originally developed for power system transient results such as from digital fault recorders (DFRs), but it can be used for any data
- Comtrade is now being used for the exchange of PMU data and transient stability results
- Three variations on the standard (1991, 1999 and 2013 format)
- PowerWorld now allows transient stability results to be quickly saved in all three Comtrade Formats
Three Bus Example Comtrade Results

The 1991 format is just ascii using four files; the 1999 format extends to allow data to be stored in binary format; the 2013 format extends to allow a single file format.

```
PowerWorld,Transient Stability,1991
3, 3A, 0D
1,Gen Bus 1 #1_Speed,, ,1.0054131589E-9, 1,0, 0,999998
2,Gen Bus 2 #1_Speed,, ,1.00940544294E-9, 0.999988,0, 0,999998
3,Gen 3 #1_Speed,, ,9.01581660036E-10, 1,0, 0,999998
60
0
0,503
04/11/16,00:00:00.000000
04/11/16,00:00:00.000000
ASCII

1, 0, 0, 11169, 0,
2, 0, 0, 11169, 0,
3, 10000,828905, 0,879676,
4, 10000,828905, 0,879676,
5, 20000,825941, 5448,875444,
6, 30000,820131, 16181,867114,
7, 40000,811594, 32198,854686,
8, 50000,800330, 53337,838422,
9, 60000,786339, 79270,818589,
10, 70000,769859,109779,795318,
11, 80000,751125,144320,769138,
12, 90000,730138,182784,740181,
13, 100000,707255,224625,709189,
14, 110000,682474,269299,676185,
```
Large System Studies

• The challenge with large systems, which could have more than 100,000 states, is the sheer size
 – Most eigenvalues are associated with the local plants
 – Computing all the eigenvalues is computationally challenging, order n^3

• Specialized approaches can be used to calculate particular eigenvalues of large matrices
 – See Kundur, Section 12.8 and associated references
Relationship to Signal-Based Modal Analysis

- Both model-based and signal-based modal analysis are trying to get similar information.
- The advantage of the signal-based approach is it does not need a model and does not require calculating the eigenvalues of potentially quite large matrices.
- Disadvantages are lack of sensitivity information and the inability to see many modes.
- The model-based approach can potentially provide more information, but the quality of the information depends on the model.
- Disadvantages are need to deal with potentially quite large matrices and the need for a model.
Single Machine Infinite Bus

• A quite useful analysis technique is to consider the small signal stability associated with a single generator connected to the rest of the system through an equivalent transmission line.

• Driving point impedance looking into the system is used to calculate the equivalent line's impedance.
 – The Z_{ii} value can be calculated quite quickly using sparse vector methods (a fast forward and fast backward).

• Rest of the system is assumed to be an infinite bus with its voltage set to match the generator's real and reactive power injection and voltage.
Small SMIB Example

- The infinite bus voltage is then calculated so as to match the bus terminal voltage and current.

\[\bar{V}_{\text{inf}} = \bar{V}_i - Z_i \bar{I}_i \]

where \(\left(\frac{P_i + jQ_i}{\bar{V}_i} \right)^* = \bar{I}_i \)

- In the example we have

\[\left(\frac{P_4 + jQ_4}{\bar{V}_4} \right)^* = \left(\frac{1 + j0.572}{1.072 + j0.220} \right)^* = 1 - j0.328 \]

\[\bar{V}_{\text{inf}} = (1.072 + j0.220) - (j0.22)(1 - j0.328) \]

\[\bar{V}_{\text{inf}} = 1.0 \]
Small SMIB Example

• As a small example, consider the 4 bus system shown below, in which bus 2 really is an infinite bus.

• To get the SMIB for bus 4, first calculate Z_{44}.

\[
Y_{bus} = j \begin{bmatrix}
-25 & 0 & 10 & 10 \\
0 & 1 & 0 & 0 \\
10 & 0 & -15 & 0 \\
10 & 0 & 0 & -13.33
\end{bmatrix} \rightarrow Z_{44} = j0.1269
\]

Z_{44} is Z_{th} in parallel with $jX'_{d,4}$ (which is j0.3) so Z_{th} is j0.22.

Here I retained the infinite bus, but replaced its column and row by zeros except 1 on the diagonal.
Calculating the A Matrix

- The SMIB model A matrix can then be calculated either analytically or numerically
 - The equivalent line's impedance can be embedded in the generator model so the infinite bus looks like the "terminal"
- This matrix is calculated in PowerWorld by selecting Transient Stability, SMIB Eigenvalues
 - Select Run SMIB Eigen Analysis to perform an SMIB analysis for all the generators in a case
 - Right click on a generator on the SMIB form and select Show SMIB Dialog to see the Generator SMIB Eigenvalue Dialog
 - These two bus equivalent networks can also be saved, which is useful for understanding the behavior of individual generators
Example: Bus 4 SMIB Dialog

- On the SMIB dialog, the General Information tab shows information about the two bus equivalent PowerWorld case B4_SMIB.
Example: Bus 4 SMIB Dialog

- On the SMIB dialog, the A Matrix tab shows the A_{sys} matrix for the SMIB generator

- In this example A_{21} is showing

$$
\frac{\partial \Delta \omega_{4,pu}}{\partial \delta_4} = \frac{1}{2H_4} \left(-\frac{\partial P_{E,4}}{\partial \delta_4} \right) = -\left(\frac{1}{6} \right) \left(\frac{-1}{0.3 + 0.22} \right) \left(-1.2812 \cos(23.94°) \right)
$$

$$
= -0.3753
$$
Example: Bus 4 with GENROU Model

- The eigenvalues can be calculated for any set of generator models
- The example can be extended by replacing the bus 4 generator classical machine with a GENROU model
 - There are now six eigenvalues, with the dominate response coming from the electro-mechanical mode with a frequency of 1.84 Hz, and damping of 6.9%

PowerWorld case B4_SMIB_GENROU