ECEN 615
Methods of Electric Power Systems Analysis

Lecture 17: Sensitivity Analysis, Least Squares

Prof. Tom Overbye
Dept. of Electrical and Computer Engineering
Texas A&M University
overbye@tamu.edu
Announcements

• Read Chapter 9
 • We’ll just briefly cover state estimation since it is covered by ECEN 614, but will use it as an example for least squares and QR factorization

• Homework 4 is due on Thursday Nov 1
LODFs Evaluation Revisited

- We simulate the impact of the outage of line k by adding the basic transaction $w_k = \{i', j', \Delta t_k\}$ and selecting Δt_k in such a way that the flows on the dashed lines become exactly zero.

The Δt_k is zeroing out the flow on the dashed lines; if we simulated in power flow the flow on the line itself would be quite high.
LODFs Evaluation Revisited Five Bus Example

Line 1
-52 MW
Line 2
26 MW
Line 3
63 MW
Line 4
-128 MW
Line 5
37 MW
Line 6
-0 MW

slack
1.050 pu
1.040 pu
1.042 pu
1.042 pu
1.044 pu

One
Two

A
MVA
A
MVA
A
MVA
A
MVA

200 MW
238 MW
1.050 pu

1.040 pu
1.042 pu

280 MW
100 MW

128 MW
0 MW
2a
2a

-100 MW
100 MW

86%

-100 MW
100 MW

Four
Five

3a
3a
LODFs Evaluation Revisited Five Bus Example

Line 1: 1.050 pu, -179 MW, 106 MW, -100 MW

Line 2: 1.040 pu, 238 MW, 100 MW

Line 3: 1.050 pu, 106 MW

Line 4: 1.028 pu, 111 MW, 1 MW

Line 5: 1.030 pu, 100 MW

Line 6: 1.030 pu, 100 MW

One: 200 MW, 1.050 pu

Two: 280 MW, 1.040 pu, 100 MW

Three: 118 MW, 1.017 pu

Four: 450 MW, 120% MVA

Five: 450 MW, 303% MVA

2a: -1 MW

3a: -1 MW
Multiple Line LODFs

- LODFs can also be used to represent multiple device contingencies, but it is usually more involved than just adding the effects of the single device LODFs.
- Assume a simultaneous outage of lines k_1 and k_2.
- Now setup two transactions, w_{k1} (with value Δt_{k1}) and w_{k2} (with value Δt_{k2}) so

\[
\begin{align*}
 f_{k1} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k1} &= 0 \\
 f_{k2} + \Delta f_{k1} + \Delta f_{k2} - \Delta t_{k2} &= 0 \\
 f_{k1} + \varphi^{(w_{k1})} \Delta t_{k1} + \varphi^{(w_{k2})} \Delta t_{k2} - \Delta t_{k1} &= 0 \\
 f_{k2} + \varphi^{(w_{k1})} \Delta t_{k1} + \varphi^{(w_{k2})} \Delta t_{k1} - \Delta t_{k2} &= 0
\end{align*}
\]
Multiple Line LODFs

• Hence we can calculate the simultaneous impact of multiple outages; details for the derivation are given in C. Davis, T. J. Overbye, "Linear Analysis of Multiple Outage Interaction," Proc. 42nd HICSS, 2009

• Equation for the change in flow on line \(\ell \) for the outage of lines \(k_1 \) and \(k_2 \) is

\[
\Delta f_\ell = \begin{bmatrix} d_{\ell}^{k_1} & d_{\ell}^{k_2} \end{bmatrix} \left[\begin{bmatrix} 1 & -d_{k_1}^{k_2} \\ -d_{k_2}^{k_1} & 1 \end{bmatrix} \right]^{-1} \begin{bmatrix} f_{k_1} \\ f_{k_2} \end{bmatrix}
\]
Multiple Line LODFs

- Example: Five bus case, outage of lines 2 and 5 to flow on line 4.

\[
\Delta f_\ell = \begin{bmatrix} d_{\ell}^{k_1} & d_{\ell}^{k_2} \end{bmatrix} \begin{bmatrix} 1 & -d_{k_2}^{k_1} \\ -d_{k_2}^{k_1} & 1 \end{bmatrix}^{-1} \begin{bmatrix} f_{k_1} \\ f_{k_2} \end{bmatrix}
\]

\[
\Delta f_\ell = \begin{bmatrix} 0.4 & 0.25 \end{bmatrix} \begin{bmatrix} 1 & -0.75 \\ -0.6 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.336 \\ -0.331 \end{bmatrix} = 0.005
\]
Multiple Line LODFs

Flow goes from 117.5 to 118.0
Line Closure Distribution Factors (LCDFs)

base case

line k addition case

\[
LCDF_{\ell,k}^k = \frac{\Delta f_{\ell}}{f_k} = \text{LCDF}_{\ell,k}
\]
The line closure distribution factor (LCDF), \(LCDF_{\ell,k} \), for the closure of line \(k \) (or its addition if it does not already exist) is the portion of the line active power flow on line \(k \) that is distributed to line \(\ell \) due to the closure of line \(k \).

Since line \(k \) is currently open, the obvious question is, "what flow on line \(k \)?"

Answer (in a dc power flow sense) is the flow that will occur when the line is closed (which we do not know).
LCDF Evaluation

- We simulate the impact of the closure of line k by imposing the additional basic transaction

$$w_k = \{i', j', \Delta t_k \}$$

on the base case network and we select Δt_k so that

$$\Delta t_k = -f_k$$
LCDF Evaluation

- For the other parts of the network, the impacts of the addition of line k are the same as the impacts of adding the basic transaction w_k

\[
\Delta f_{\ell} = \phi^{(w_k)}_{\ell} \Delta t_k = -\phi^{(w_k)}_{\ell} f_k
\]

- Therefore, the definition is

\[
LCDF_{\ell,k} = \frac{\Delta f_{\ell}}{f_k} = -\phi^{(w_k)}_{\ell}
\]

- The post-closure flow f_k is determined (in a dc power flow sense) as the flow that would occur from the angle difference divided by $(1 + \phi^{(w_k)}_k)$
Outage Transfer Distribution Factor

- The outage transfer distribution factor (OTDF) is defined as the PTDF with the line k outaged.
- The OTDF applies only to the post-contingency configuration of the system since its evaluation explicitly considers the line k outage.

\[\left(\phi_{(w)}^{(l)} \right)^k \]

- This is a quite important value since power system operation is usually contingency constrained.
Outage Transfer Distribution Factor (OTDF)

\[f_\ell + \Delta f_\ell \]

\[\left(\varphi^{(w)}_\ell \right)^k \triangleq \left. \frac{\Delta f_\ell}{\Delta t} \right|_{k \text{ outaged}} \]
OTDF Evaluation

\[\Delta f_{\ell} = \Delta f^{(1)}_{\ell} \]

\[+ \Delta f^{(2)}_{\ell} \]
OTDF Evaluation

- Since \(\Delta f^{(1)}_\ell = \varphi^{(w)}_\ell \Delta t \)

and \(\Delta f_k = \varphi^{(w)}_k \Delta t \)

then \(\Delta f^{(2)}_\ell = d^k \Delta f_k = d^k \varphi^{(w)}_k \Delta t \)

so that

\[
\Delta f_\ell = \Delta f^{(1)}_\ell + \Delta f^{(2)}_\ell = \left[\varphi^{(w)}_\ell + d^k \varphi^{(w)}_k \right] \Delta t
\]

\[
\left(\varphi^{(w)}_\ell \right)^k = \varphi^{(w)}_\ell + d^k \varphi^{(w)}_k
\]
Five Bus Example

- Say we would like to know the PTDF on line 1 for a transaction between buses 2 and 3 with line 2 out.
Five Bus Example

- Hence we want to calculate these values without having to explicitly outage line 2

Hence the value we are looking for is 0.2 (20%)
Five Bus Example

- Evaluating: the PTDF for the bus 2 to 3 transaction on line 1 is 0.2727; it is 0.1818 on line 2 (from buses 1 to 3); the LODF is on line 1 for the outage of line 2 is -0.4
- Hence \(\left(\varphi_{(w)}^{(k)} \right) \) = \(\varphi_{(w)}^{(k)} + d_{(k)}^{(w)} \)

\[0.2727 + (-0.4) \times (0.1818) = 0.200\]

- For line 4 (buses 2 to 3) the value is

\[0.7273 + (0.4) \times (0.1818) = 0.800\]
August 14, 2003 OTDF Example

- Flowgate 2264 monitored the flow on Star-Juniper 345 kV line for contingent loss of Hanna-Juniper 345 kV normally the LODF for this flowgate is 0.361
 - flowgate had a limit of 1080 MW
 - at 15:05 EDT the flow as 517 MW on Star-Juniper, 1004 MW on Hanna-Juniper, giving a flowgate value of
 \[520 + 0.361 \times 1007 = 884\ (82\%)
 - Chamberlin-Harding 345 opened at 15:05, but was missed
 - At 15:06 EDT (after loss of Chamberlin-Harding 345) #2265 had an incorrect value because its LODF was not updated.
 - Value should be \[633 + 0.463 \times 1174 = 1176\ (109\%)
 - Value was \[633 + 0.361 \times 1174 = 1057\ (98\%)

Value should be \[633 + 0.463 \times 1174 = 1176\ (109\%)
Value was \[633 + 0.361 \times 1174 = 1057\ (98\%)

UTC Revisited

- We can now revisit the uncommitted transfer capability (UTC) calculation using PTDFs and LODFs
- Recall trying to determine maximum transfer between two areas (or buses in our example)
- For base case maximums are quickly determined with PTDFs

\[
 u^{(o)}_{m,n} = \min_{\phi^{(w)}_{\ell} > 0} \left\{ \frac{f_{\ell}^{\max} - f_{\ell}^{(o)}}{\phi^{(w)}_{\ell}} \right\}
\]

Note we are ignoring zero (or small) PTDFs; would also need to consider flow reversal
UTC Revisited

- For the contingencies we use

\[u_{m,n}^{(1)} = \min \left\{ \frac{f_{\ell}^{\text{max}} - f_{\ell}^{(0)} - d_{k}^{\ell} f_{k}^{(0)}}{(\phi_{w}^{(w)})^{k}} \right\} \]

- Then as before \(u_{m,n} = \min \{ u_{m,n}^{(0)}, u_{m,n}^{(1)} \} \)

We would need to check all contingencies! Also, this is just a linear estimate and is not considering voltage violations.
Five Bus Example

\[w = \{2, 3, \Delta t\} \quad f^{(0)} = [42, 34, 67, 118, 33, 100]^T \]

\[f^{max} = [150, 400, 150, 150, 150, 1,000]^T \]
Therefore, for the base case

\[u_{2,2}^{(0)} = \min_{\phi_{\ell}^{(w)}>0} \left\{ \frac{f_{\ell}^{\max} - f_{\ell}^{(0)}}{\phi_{\ell}^{(w)}} \right\} \]

\[
= \min \left\{ \frac{150 - 42}{0.2727}, \frac{400 - 34}{0.1818}, \frac{150 - 67}{0.0909}, \frac{150 - 118}{0.7273}, \frac{150 - 33}{0.0909} \right\}
\]

\[
= 44.0
\]
Five Bus Example

For the contingency case corresponding to the outage of the line 2

\[u_{2,3}^{(1)} = \min \left\{ \frac{f_{\ell}^{\text{max}} - f_{\ell}^{(0)} - d_{\ell}^{2}f_{2}^{(0)}}{(\varphi_{\ell}^{(w)})^2} \right\} > 0 \]

The limiting value is line 4

\[\frac{f_{\ell}^{\text{max}} - f_{\ell}^{(0)} - d_{\ell}^{2}f_{2}^{(0)}}{(\varphi_{\ell}^{(w)})^2} = \frac{150 - 118 - 0.4 \times 34}{0.8} = 26 \]

Hence the UTC is limited by the contingency to 23.0
Additional Comments

• Distribution factors are defined as small signal sensitivities, but in practice, they are also used for simulating large signal cases.

• Distribution factors are widely used in the operation of the electricity markets where the rapid evaluation of the impacts of each transaction on the line flows is required.

• Applications to actual systems show that the distribution factors provide satisfactory results in terms of accuracy.

• For multiple applications that require fast turn around time, distribution factors are used very widely, particularly, in the market environment.

• They do not work well with reactive power!
Least Squares

- So far we have considered the solution of $Ax = b$ in which A is a square matrix; as long as A is nonsingular there is a single solution
 - That is, we have the same number of equations (m) as unknowns (n)
- Many problems are overdetermined in which there are more equations than unknowns ($m > n$)
 - Overdetermined systems are usually inconsistent, in which no value of x exactly solves all the equations
- Underdetermined systems have more unknowns than equations ($m < n$); they never have a unique solution but are usually consistent