ECEN 615
Methods of Electric Power Systems Analysis
Lecture 18: State Estimation

Prof. Tom Overbye
Dept. of Electrical and Computer Engineering
Texas A&M University
overbye@tamu.edu
Announcements

• Read Chapter 9 from the book
• Homework 4 is due on Thursday October 31.
Nonlinear Formulation

- A regular ac power system is nonlinear, so we need to use an iterative solution approach. This is similar to the Newton power flow. Here assume m measurements and n state variables (usually bus voltage magnitudes and angles) Then the Jacobian is the H matrix

$$H(x) = \frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{x_1} & \ldots & \frac{\partial f_1}{x_n} \\ \frac{\partial f_m}{x_1} & \ldots & \frac{\partial f_m}{x_n} \end{bmatrix}$$
Assume we measure the real and reactive power flowing into one end of a transmission line; then the z_i-$f_i(x)$ functions for these two are

$$P_{ij}^{\text{meas}} = \left[-V_i^2 G_{ij} + V_i V_j \left(G_{ij} \cos(\theta_i - \theta_j) + B_{ij} \sin(\theta_i - \theta_j) \right) \right]$$

$$Q_{ij}^{\text{meas}} = \left[V_i^2 \left(B_{ij} + \frac{B_{\text{cap}}}{2} \right) + V_i V_j \left(G_{ij} \sin(\theta_i - \theta_j) - B_{ij} \cos(\theta_i - \theta_j) \right) \right]$$

- Two measurements for four unknowns

Other measurements, such as the flow at the other end, and voltage magnitudes, add redundancy
SE Iterative Solution Algorithm

• We then make an initial guess of x, $x^{(0)}$ and iterate, calculating Δx each iteration.

$$\Delta x = \left[H^T R^{-1} H \right]^{-1} H^T R^{-1} \begin{bmatrix} z_1 - f_1(x) \\ \vdots \\ z_m - f_m(x) \end{bmatrix}$$

$$x^{(k+1)} = x^{(k)} + \Delta x$$

Keep in mind that H is no longer constant, but varies as x changes. Often ill-conditioned.

This is exactly the least squares form developed earlier with $H^T R^{-1} H$ an n by n matrix. This could be solved with Gaussian elimination, but this isn't preferred because the problem is often ill-conditioned.
Nonlinear SE Solution Algorithm, Book Figure 9.11

9.4 STATE ESTIMATION OF AN AC NETWORK

START

READ MEASUREMENTS

WHERE \(x = \begin{bmatrix} \epsilon \\ \delta \end{bmatrix} \)

PICK STARTING VALUE FOR \(x = x^0 \)

SOLVE FOR \((z_i - f_i(x)) \) FOR \(i = 1 \cdots N_m \)

CALCULATE H MATRIX AS FUNCTION OF \(x \)

CALCULATE \(H^T R^{-1} H \) MATRIX

CALCULATE \([H^T R^{-1} H]^{-1} \)

SOLVE FOR \(\Delta x \)

\[
\Delta x = [H^T R^{-1} H]^{-1} H^T R^{-1} \begin{bmatrix} z_1 - f_1(x) \\ z_2 - f_2(x) \end{bmatrix}
\]

CALC MAX \((|\Delta x_i|) \) \(i = 1 \cdots N_x \)

\[\text{MAX } (|\Delta x_i|) < \epsilon \]

YES

DONE

NO

UPDATE \(x : x = x + \Delta x \)

FIGURE 9.11 State estimation solution algorithm.
Example: Two Bus Case

• Assume a two bus case with a generator supplying a load through a single line with $x=0.1$ pu. Assume measurements of the p/q flow on both ends of the line (into line positive), and the voltage magnitude at both the generator and the load end. So $B_{12} = B_{21}=10.0$

\[
P_{ij}^{meas} = \left[V_i V_j \left(B_{ij} \sin(\theta_i - \theta_j) \right) \right]
\]

\[
Q_{ij}^{meas} = \left[V_i^2 B_{ij} + V_i V_j \left(-B_{ij} \cos(\theta_i - \theta_j) \right) \right]
\]

\[
V_{i}^{meas} - V_i = 0
\]

We need to assume a reference angle unless we directly measuring phase
Example: Two Bus Case

- Let

\[
Z_{\text{meas}} = \begin{bmatrix}
P_{12} \\
Q_{12} \\
P_{21} \\
Q_{21} \\
P_1 \\
Q_1 \\
V_1 \\
V_2
\end{bmatrix} = \begin{bmatrix}
2.02 \\
1.5 \\
-1.98 \\
-1 \\
1.01 \\
0.87
\end{bmatrix}
\]

\[
x^0 = \begin{bmatrix}
V_1 \\
\theta_2 \\
V_2
\end{bmatrix} = \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \sigma_i = 0.01
\]

We assume an angle reference of \(\theta_1=0 \)

\[
H(x) = \begin{bmatrix}
V_2 10 \sin(-\theta_2) & -V_1 V_2 10 \cos(-\theta_2) & V_1 10 \sin(-\theta_2) \\
20V_1 - V_2 10 \cos(-\theta_2) & -V_1 V_2 10 \sin(-\theta_2) & -V_1 10 \cos(-\theta_2) \\
V_2 10 \sin(\theta_2) & V_1 V_2 10 \cos(\theta_2) & V_1 10 \sin(\theta_2) \\
-V_2 10 \cos(\theta_2) & V_1 V_2 10 \sin(\theta_2) & 20V_2 - V_1 10 \cos(\theta_2)
\end{bmatrix}
\]
Example: Two Bus Case

• With a flat start guess we get

\[H(x^0) = \begin{bmatrix} 0 & -10 & 0 \\ 10 & 0 & -10 \\ 0 & 10 & 0 \\ -10 & 0 & 10 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad z - f(x^0) = \begin{bmatrix} 2.02 \\ 1.5 \\ -1.98 \\ -1 \\ 0.01 \\ -0.13 \end{bmatrix} \]

\[R = \begin{bmatrix} 0.0001 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.0001 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.0001 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.0001 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.0001 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.0001 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.0001 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.0001 \end{bmatrix} \]
Example: Two Bus Case

\[
H^T R^{-1} H = 1e^6 \times \begin{bmatrix}
2.01 & 0 & -2 \\
0 & 2 & 0 \\
-2 & 0 & 2.01 \\
\end{bmatrix}
\]

\[
x^1 = x^0 + \left[H^T R^{-1} H \right]^{-1} H^T R^{-1} \begin{bmatrix}
2.02 \\
1.5 \\
-1.98 \\
-1 \\
0.01 \\
0.13 \\
\end{bmatrix} = \begin{bmatrix}
1.003 \\
-0.2 \\
0.8775 \\
\end{bmatrix}
\]
Assumed SE Measurement Accuracy

- The assumed measurement standard deviations can have a significant impact on the resultant solution, or even whether the SE converges.
- The assumption is a Gaussian (normal) distribution of the error with no bias.
In order to estimate all \(n \) states we need at least \(n \) measurements. However, where the measurements are located is also important, a topic known as observability:

- In order for a power system to be fully observable usually we need to have a measurement available no more than one bus away.
- At buses we need to have at least measurements on all the injections into the bus except one (including loads and gens).
- Loads are usually flows on feeders, or the flow into a transmission to distribution transformer.
- Generators are usually just injections from the GSU.
Pseudo Measurements

- Pseudo measurements are used at buses in which there is no load or generation; that is, the net injection into the bus is known with high accuracy to be zero.
 - In order to enforce the net power balance at a bus, we need to include an explicit net injection measurement.

- To increase observability, sometimes estimated values are used for loads, shunts, and generator outputs.
 - These “measurements” are represented as having a higher much standard deviation.
SE Observability Example
SE Bad Data Detection

- The quality of the measurements available to an SE can vary widely, and sometimes the SE model itself is wrong. Causes include
 - Modeling Errors: perhaps the assumed system topology is incorrect, or the assumed parameters for a transmission line or transformer could be wrong
 - Data Errors: measurements may be incorrect because of incorrect data specifications, like the CT ratios or even flipped positive and negative directions
 - Transducer Errors: the transducers may be failing or may have bias errors
 - Sampling Errors: SCADA does not read all values simultaneously and power systems are dynamic
SE Bad Data Detection

- The challenge for SE is to determine when there is likely a bad measurement (or multiple ones), and then to determine the particular bad measurements.

- $J(x)$ is random number, with a probability density function (PDF) known as a chi-squared distribution, $\chi^2(K)$, where K is the degrees of freedom, $K=m-n$.

- It can be shown the expected mean for $J(x)$ is K, with a standard deviation of $\sqrt{2K}$.
 - Values of $J(x)$ outside of several standard deviations indicate possible bad measurements, with the measurement residuals used to track down the likely bad measurements.

- SE can be re-run without the bad measurements.
Example SE Application: PJM and MISO

- PJM provides information about their EMS model in
 - www.pjm.com/-/media/documents/manuals/m03a.ashx

Data here is from the Sept 2018 (Rev 16) document
Example SE Application: PJM and MISO

- PJM measurements are required for 69 kV and up
- PJM SE is triggered to execute every minute
- PJM SE solves well over 98% of the time
- Below reference provides info on MISO SE from March 2015
 - 54,433 buses
 - 54,415 network branches
 - 6332 generating units
 - 228,673 circuit breakers
 - 289,491 mapped points

Energy Management Systems (EMSs)

- EMSs are now used to control most large scale electric grids
- EMSs developed in the 1970’s and 1980’s out of SCADA systems
 - An EMS usually includes a SCADA system; sometimes called a SCADA/EMS
- Having a SE is almost the definition of an EMS. The SE then feeds data to the more advanced functions
- EMSs have evolved as the industry as evolved as the industry has evolved, with functionality customized for the application (e.g., a reliability coordinator or a vertically integrated utility)
EEI Member Companies

EEI U.S. Member Company Service Territories

Electric Coops

America’s Electric Cooperative Network

[Map of Electric Cooperatives across the United States]
ERCOT Control Center with EMS
ERCOT EMS

EMS Applications

- Load and Wind Forecasting
- Load Frequency Control
- Resource Limit Calculator
- State Estimator
- Real-Time Contingency Analysis (RTCA)
- Transmission Constraint Manager (TCM)
- Dynamic Ratings
- Forced Outage Detection

EMS->MMS Interface

MMS Applications

- Security Constrained Economic Dispatch (SCED)
- Ancillary Service (AS) Manager
- Reliability Unit Commitment (WRUC, DRUC, HRUC)
- Supplemental Ancillary Services Market (SASM)
- Look Ahead SCED (LASCED)
- Day Ahead Market (DAM)