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Announcements

® Read Chapter 4

®* Homework 4 is posted; it should be done before the
first exam but need not be turned In

® Midterm exam is on Tuesday Oct 17 in class; closed
book, closed notes, one 8.5 by 11 inch hand written
notesheet allowed; calculators allowed
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Lead-Lag Block

u——%

1+sT,

Y ‘ ( Output of Lead/Lag

1+sT,

® |n exciters such as the EXDC1 the lead-lag block is
used to model time constants inherent in the exciter; the
values are often zero (or equivalently equal)

* |n steady-state the input is equal to the output
® To get equations write 1 T

A

in form with Bo=1/Tg, B=TalTe, |1, cr T 75T
A _ 'B B

a,=1/Tg

1+sT, 1T, +s




Lead-Lag Block

Bo=1/Tg, B1=TA/Tg,

® The equations are with
3}‘

0,=1/Tg
then
dx 1
R — Uu-— ——(U-—
at pou—ayy T, ( Y)

y=X+[BU=X+-2uU
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Limits: Windup versus Nonwindup

Al
* When there is integration, how limits are enforced can
have a major impact on simulation results

* Two major flavors: windup and non-windup
* Windup limit for an integrator block

I—max
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Uu—— >y
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L
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dv < IfL SV L theny=v
gt Y elselfv<Ly,theny =L,
elseifv>L, ,theny =1L,




Limits on First Order Lag
T
* Windup and non-windup limits are handled in a similar

manner for a first order lag
dv 1

— =—(Ku—-v)
Loy dt T
K Y /7 fL..<v<L..th =
u—o >y min SV S Ly theny =v
1+sT J elselfv<L,,theny=1L_.,
L i elseifv>L . theny=1L__




Non-Windup Limit First Order Lag

Al
* With a non-windup limit, the value of y Is prevented
from exceeding its limit
I_Lmax dyzl(Ku_y)
K dt T

u—— y (except as indicated below)

1+sST

— I—min dy 1

IfL . <y <L_ thennormal E:?(Ku—y)

Ify > L_ theny=L__ and if u >0 then %:0

Ify < L. theny=L_. andifu <0 then %:o
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Lead-Lag Non-Windup Limits

® There is not a unique way to implement non-windup
limits for a lead-lag. "
This is the one from e
IEEE 421.5-1995 L
(Figure E.6)
— D) AN
T,>T,17,>0,T,>0 i E AJ I
Ify>B,thenx=B T
Ify <A, thenx=A 2
If B>y >A,thenx=y ._%1,_®j,
-1

(b) Implementation
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lgnored States

When integrating block diagrams often states are
Ignored, such as a measurement delay with Tz=0

In this case the differential equations just become
algebraic constraints

Example: For block at right, % [ L max
as T—0, v=Ku u—> J y
L

1+sT

With lead-lag it is quite common for T,=Tyg, resulting
In the block being ignored
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IEEE T1 Example
Al

Assume previous GENROU case with saturation. Then
add a IEEE T1 exciter with Ka=50, Ta=0.04, Ke=-0.06,
Te=0.6, Vr,.,,=1.0, Vr,.= -1.0 For saturation assume

Se(2.8) = 0.04, Se(3.73)=0.33
Saturation function is 0.1621(Efd-2.303)? (for Efd >

2.303); otherwise zero m
Efd is initially 3.22 \ “é;?—‘“j;‘@g me
Se(3.22)*Efd=0.437 P R
(Vr-Se*Efd)/Ke=Efd o

Vr =0.244 B4 GENROU_Sat IEEET1

Vref = 0.244/Ka +V; =0.0488 +1.0946=1.09948




IEEE T1 Example
T

® For 0.1 second fault (from before), plot of Efd and the
terminal voltage Is given below

* Initial V,=1.0946, final V,=1.0973
— Steady-state error depends on the value of Ka

ield Voltage (pu)
NN
/ V AVERY 4 Vi

J

-‘h\ﬁ

——————

| — Gen Bus 4 #1 Field Voltage (pu) I — Gen Bus 4 #1 Term. PU I
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Voltage (pu)

Al
® Same case, except with Ka=500 to decrease steady-state

IEEE T1 Example

error, no Vr limits; this case is actually unstable

us 4 #1 Field Voltage (pu)
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IEEE T1 Example
Al

* With Ka=500 and rate feedback, Kf=0.05, Tf=0.5
* Initial V,=1.0946, final V,=1.0957

Gen Bus 4 #1 Field Voltage (pu) Gen Bus 4#1 Term. PU
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WECC Case Type 1 Exciters
T
® Inarecent WECC case with 2782 exciters, 58 are
modeled with the IEEE T1, 257 with the EXDC1 and

none with the ESDC1A

® Graph shows K¢ value for the EXDC1 exuters In case;

about 1/3 are separately
excited, and the rest self

excited

— Value of K¢ equal zero
indicates code should : H
set K¢ so V, initializes |
to zero; this is used to mimic =
the operator action of trimming this value

14




DC2 Exciters
T

® Other dc exciters exist, such as the EXDC2, which is
quite similar to the EXDC1,; about 41 WECC exciters

are of this type
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Fig. 4. Type DC2 - DC Commutator Exciter

Image Source: Fig 4 of "Excitation System Models for Power Stability Studies,"
IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981
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ESDC4B

® Newer dc model introduced in 421.5-2005 in which a
PID controller is added; might represent a retrofit

ALTERNATE
Vor, @ — — QELINPUTS o Vog,
ALTERNATE
v UEL INPUTS
veL €— — — > Ve V;
T "RM
Vs VRMA)("KA
4— : LV A Ve .
N K sK HV GATE FD
— 1 5% GATE +
V. b) Ko+ — + —>
s 1+sT,
y N 7 VTﬂrVRMII‘J
VREF VRMINIKA

sK;
(1+sT,)

Image Source: Fig 5-4 of IEEE Std 421.5-2005

-

o
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Desired Performance
T
® A discussion of the desired performance of exciters Is
contained in IEEE Std. 421.2-2014 (update from 1990)

® Concerned with

— large signal performance: large, often discrete change in the
voltage such as due to a fault; nonlinearities are significant

* Limits can play a significant role

— small signal performance: small disturbances in which close
to linear behavior can be assumed

* Increasingly exciters have inputs from power system
stabilizers, so performance with these signals Is
Important
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Transient Response

o

® Figure shows typical transient response performance to

N --------
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Image Source: IEEE Std 421.2-1990, Figure 3 18




Small Signal Performance
T
* Small signal performance can be assessed by either the
time responses, frequency response, or eigenvalue
analysis . . . .

EXCITATION CONTROL SYSTEM

® Figure shows the n bl s
typical open loop °

performance of
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Image Source: IEEE Std 421.2-1990, Figure 4 19




Small Signal Performance

A

Figure shows typical closed-loop performance
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AC Exciters
Al

* Almost all new exciters use an ac source with an
assoclated rectifier (either from a machine or static)

® AC exciters use an ac generator and either stationary or
rotating rectifiers to produce the field current

— In stationary systems the field current is provided through slip
rings

— In rotating systems since the rectifier is rotating there is no
need for slip rings to provide the field current

— Brushless systems avoid the anticipated problem of supplying

high field current through brushes, but these problems have
not really developed
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AC Exciter System Overview

AC exciter Main generator

Field Armature Stationary diode Field Armature

~3() MT@ QCTT F

7‘<}_ ] ref.
Controlled i regulator

rectifier A |
| ~—< AC
i __,/‘ ref.
'y AC

l regulator

oy
=

~——— Aux. inputs

Figure 8.3 Field-controlled alternator rectifier excitation system

Image source: Figures 8.3 of Kundur, Power System Stability and Control, 1994

o
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ABB UNICITER
Al

UNICITER® Brushless Excitation
Brushless excitation system — Electrical diagram

Cubicle + - Automatic Voltage Regulator
Stator L__I (DC)-- stator field winding
Rotor (AC) -- 3 phase rotor field winding
( AC—DC) rotating rectifier wheel
< <
¢ < UNICITER®
< <
Main rotor pole winding of synchronous
Rotor L | motor (DC)
.
3 phase winding of synchronous
Stator . — ‘ motor/generator (AC)

Image source: www02.abb.com, Brushless Excitation Systems Upgrade, 23




ABB UNICITER Example
o

UNICITER® Example
Hydro Power Plant — Horizontal - Switzerland

= Old DC commutator exciter
by Brown Boveri
' = Date of manufacﬂure: 1960

: New UNICITER® by ABB
T = GTSC Birr

Image source: www02.abb.com, Brushless%kitton Systems Upgrade, 2 A




ABB UNICITER Rotor Field

Image source: www02.abb.com, Brushless Excitation Systems Upgrade,

A
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AC Exciter Modeling
T

® Originally represented by IEEE T2 shown below

1+ sTr

OTHER
SIGNALS

Image Source: Fig 2 of "Computer Representation of Excitation Systems,"
IEEE Trans. Power App. and Syst., vol. PAS-87, pp. 1460-1464, June 1968 26




EXACI1 Exciter

® The Fgy function represent the rectifier regulation,

A

which results in a decrease in output voltage as the field

current Is Iincreased

<
n
<

RMAX

+ Vg v Ero
Vern I+ sTe Ka i ! : u (1) ——
) I+sTg sT, . sTe . .
| FE?‘

T o J

\I

-

v
F

K: +S¢ |= -1, = VFD -
- E
sKe VFE‘ z | }
lesT,. | '
) + Iep
K, et — -

Image Source: Fig 6 of "Excitation System Models for Power Stability Studies,"
IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981
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EXACI1 Rectifier Regulation

Ve -I -(? »c,

A

- IF1,<0.433 Fex 1-0.581,
ley =2 = 3“’ L] F0.443<1,<076  Fge =V 075,
£ IF1y>0.75 Fex =1.732(Hy)
In

Fig. B.2. Rectifier Regulation Equations

Image Source: Figures E.1 and E.2 of "Excitation System Models for Power Stability

Studies," IEEE Trans. Power App. and Syst., vol. PAS-100, pp. 494-509, February 1981 ’q




Initial State Determination, EXAC1

RMAX

Al

® Togetinitial states E;y . _:qg o e o ®
and l;; would be known b 7 I
and equal

* Solve V,*F,(I.,,V.) = Eq, m—h

— Easy if Kc=0, then In=0 and F_, =1

— Otherwise the Fgy function is represented
by three piecewise functions; need to figure out the correct
segment; for example for Mode 3

E K|
F,=—==1732(1,—1,)=1.732| 1-—=F
Y Y

€ €

Efd

Rewrite as Eu__y _ K.y —
1.732

e

+ K, 14

c




Static Exciters

In static exciters the field current is supplied from a
three phase source that is rectified (i.e., there is no
separate machine)

Rectifier can be either controlled or uncontrolled
Current is supplied through slip rings
Response can be quite rapid

o
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EXST1 Block Diagram
T

®* The EXST1 is intended to model rectifier in which the
power is supplied by the generator's terminals via a
transformer

— Potential-source controlled-rectifier excitation system

®* The exciter time constants are assumed to be so small
they are not represented

1"J—T VRMAX -KC IIFD

[ 1.Q [
_/

g 1+5T,

VTVEM]N _KCIIE'D




EXST4B

* EXST4B models a controlled rectifier design; field
voltage loop is used to make output independent of
supply voltage

o




Simplified Excitation System Model

* A very simple model call Simplified EX System
(SEXS) is available

— Not now commonly used; also other, more detailed models,

o

can match this behavior by setting various parameters to zero

Vier Erpaax
+
: _ 1457, @ K @ Erp
: >
€ 1+ 5T, 1+ 5T,
+
E
-Tq.-"-—S FIATN
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Compensation

Al
® Often times it Is useful to use a compensated voltage
magnitude value as the input to the exciter

— Compensated voltage depends on generator current; usually
Rc is zero

e (R x| emieeena
* PSLF and PowerWorld model compensation with the
machine model using a minus sign
— Specified on the machine base _
® PSSE requires a separate model with their COMP
model also using a negative sign

34




Compensation

® Using the negative sign convention

* If X, Is negative then the compensated voltage is
within the machine; this is known as droop

o

compensation, which is used reactive power sharing

among multiple generators at a bus

* If X, Is positive then the compensated voltage is

partially through the step-up transformer, allowing
better voltage stability

— A nice reference is C.W. Taylor, "Line drop compensation, high side

voltage control, secondary voltage control — why not control a

generator like a static var compensator,"” IEEE PES 2000 Summer
Meeting
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Example Compensation Values

0.08
0.06
0.04}
0.02
0
-0.02-
-0.041
& ]
o -0.06]
x ]
-0.08
-0.1
-0.12
0.14

o
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